If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=50-16H^2
We move all terms to the left:
(H)-(50-16H^2)=0
We get rid of parentheses
16H^2+H-50=0
a = 16; b = 1; c = -50;
Δ = b2-4ac
Δ = 12-4·16·(-50)
Δ = 3201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3201}}{2*16}=\frac{-1-\sqrt{3201}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3201}}{2*16}=\frac{-1+\sqrt{3201}}{32} $
| 17(4y+1)=3(7y+9) | | -425-8x=86+3x | | 3x-5=5.5x-12 | | 5-9f=-10f | | 12x2+8x+1=0 | | -7+4w=3w | | x-3.6÷0.2=-13 | | 7/x=1/3 | | (26+x)×x=560 | | -39=2x+1 | | (3x+1)/6=3+(x+6)/12 | | X-5+×-4+5=16+10+x-10 | | 3+2x=5x+13 | | x+130=1785 | | 3.2=1.2x+12 | | (2k+1)-4=136 | | 9x=11-(-16) | | 20h+20=-20+2h+20h | | 6-x+5x=12 | | 10w-13w=-15 | | 12h=75 | | -2x-14=-3x-1 | | (1+2)×3=(1×2)+m | | 20-6(2)=t | | 211+5x=799-3x | | 3n+33=180 | | 4/5=n/74 | | 17-44=3(x-3)-3 | | G-2÷5=g+4÷7 | | 3y+2y=81–6 | | 5/3x-4=2/x+1 | | 30+6m=96 |